Mutation burden analysis of six common mental disorders in African Americans by whole genome sequencing

Author:

Liu Yichuan1ORCID,Qu Hui-Qi1ORCID,Chang Xiao1,Qu Jingchun1,Mentch Frank D1,Nguyen Kenny1,Tian Lifeng1,Glessner Joseph1,Sleiman Patrick M A123,Hakonarson Hakon12345

Affiliation:

1. Center for Applied Genomics, Children's Hospital of Philadelphia , Philadelphia, PA 19104 , USA

2. Department of Pediatrics , The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 , USA

3. Division of Human Genetics , Children’s Hospital of Philadelphia, Philadelphia, PA 19104 , USA

4. Division of Pulmonary Medicine , Children’s Hospital of Philadelphia, Philadelphia, PA 19104 , USA

5. Faculty of Medicine , University of Iceland, 101, Iceland

Abstract

Abstract Mental disorders present a global health concern and have limited treatment options. In today’s medical practice, medications such as antidepressants are prescribed not only for depression but also for conditions such as anxiety and attention deficit hyperactivity disorder (ADHD). Therefore, identifying gene targets for specific disorders is important and offers improved precision. In this study, we performed a genetic analysis of six common mental disorders—ADHD, anxiety, depression, delays in mental development, intellectual disabilities (IDs) and speech/language disorder—in the ethnic minority of African Americans (AAs) using whole genome sequencing (WGS). WGS data were generated from blood-derived DNA from 4178 AA individuals, including 1384 patients with the diagnosis of at least one mental disorder. Mutation burden analysis was applied based on rare and deleterious mutations in the AA population between cases and controls, and further analyzed in the context of patients with single mental disorder diagnosis. Certain genes uncovered demonstrated significant P-values in mutation burden analysis. In addition, exclusive recurrences in specific type of disorder were scanned through gene–drug interaction databases to assess for availability of potential medications. We uncovered 15 genes harboring deleterious mutations, including 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR) and Uronyl 2-Sulfotransferase (UST) for ADHD; Farnesyltransferase, CAAX Box, Beta (FNTB) for anxiety; Xin Actin Binding Repeat Containing 2 (XIRP2), Natriuretic Peptide C (NPPC), Serine/Threonine Kinase 33 (STK33), Pannexin 1 (PANX1) and Neurotensin (NTS) for depression; RUNX Family Transcription Factor 3 (RUNX3), Tachykinin Receptor 1 (TACR1) and NADH:Ubiquinone Oxidoreductase Core Subunit S7 (NDUFS7) for delays in mental development; Hepsin (HPN) for ID and Collagen Type VI Alpha 3 Chain (COL6A3), Damage Specific DNA Binding Protein 1 (DDB1) and NADH:Ubiquinone Oxidoreductase Subunit A11 (NDUFA11) for speech/language disorder. Taken together, we have established critical insights into the development of new precision medicine approaches for mental disorders in AAs.

Funder

Institutional Development Funds

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3