SOX9 and SRY binding sites on mouse mXYSRa/Enh13 enhancer redundantly regulate Sox9 expression to varying degrees

Author:

Ogawa Yuya12,Terao Miho1,Tsuji-Hosokawa Atsumi1ORCID,Tsuchiya Iku12,Hasegawa Midori12,Takada Shuji12ORCID

Affiliation:

1. Department of Systems BioMedicine, National Research Institute for Child Health and Development , 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535 , Japan

2. Department of NCCHD, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510 , Japan

Abstract

Abstract Sox9 plays an essential role in mammalian testis formation. It has been reported that gene expression in the testes is regulated by enhancers. Among them, mXYSRa/Enh13—which is located at far upstream of the transcription start site—plays a critical role, wherein its deletion causes complete male-to-female sex reversal in mice. It has been proposed that the binding sites (BSs) of SOX9 and SRY, the latter of which is the sex determining gene on the Y chromosome, are associated with mXYSRa/Enh13. They function as an enhancer, whereby the sequences are evolutionarily conserved and in vivo binding of SOX9 and SRY to mXYSRa/Enh13 has been demonstrated previously. However, their precise in vivo functions have not been examined to date. To this end, this study generated mice with substitutions on the SOX9 and SRY BSs to reveal their in vivo functions. Homozygous mutants of SOX9 and SRY BS were indistinguishable from XY males, whereas double mutants had small testes, suggesting that these functions are redundant and that there is another functional sequence on mXYSRa/Enh13, since mXYSRa/Enh13 deletion mice are XY females. In addition, the majority of hemizygous mice with substitutions in SOX9 BS and SRY BS were female and male, respectively, suggesting that SOX9 BS contributes more to SRY BS for mXYSRa/Enh13 to function. The additive effect of SOX9 and SRY via these BSs was verified using an in vitro assay. In conclusion, SOX9 BS and SRY BS function redundantly in vivo, and at least one more functional sequence should exist in mXYSRa/Enh13.

Funder

National Center for Child Health and Development

JSPS

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3