The transcriptome of Escherichia coli O157: H7 reveals a role for oxidative stress resistance in its survival from predation by Tetrahymena

Author:

George Andree Sherlon1,Rehfuss Marc Yi Ming1,Parker Craig Thomas1ORCID,Brandl Maria Theresa1

Affiliation:

1. Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA

Abstract

ABSTRACTPathogenic E. coli remains undigested upon phagocytosis by Tetrahymena and is egested from the ciliate as viable cells in its fecal pellets. Factors that are involved in the survival of Shiga toxin-producing E. coli serovar O157: H7 (EcO157) from digestion by Tetrahymena were identified by microarray analysis of its transcriptome in the protozoan phagosome. Numerous genes belonging to anaerobic metabolism and various stress responses were upregulated significantly ≥ 2-fold in EcO157 cells in the food vacuoles compared with in planktonic cells that remained uningested by the protist. Among these were the oxidative stress response genes, ahpF and katG. Fluorescence microscopy and staining with CellROX® Orange confirmed the presence of reactive oxygen species in food vacuoles containing EcO157 cells. Frequency distribution analysis of the percentage of EcO157 viable cells in Tetrahymena fecal pellets revealed that the ΔahpCF and ΔahpCFΔkatG mutants were less fit than the wild type strain and ΔkatG mutant after passage through the protist. Given the broad use of oxidants as sanitizers in the food industry, our observation of the oxidative stress response in EcO157 during its interaction with Tetrahymena emphasizes the importance of furthering our knowledge of the physiology of this human pathogen in environments relevant to its ecology and to food safety.

Funder

USDA

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3