Glacial meltwater and seasonality influence community composition of diazotrophs in Arctic coastal and open waters

Author:

von Friesen Lisa W1ORCID,Paulsen Maria L2,Müller Oliver3,Gründger Friederike2,Riemann Lasse1ORCID

Affiliation:

1. Department of Biology, University of Copenhagen , Strandpromenaden 5, DK-3000 Helsingør, Denmark

2. Department of Biology, Aarhus University , Ny Munkegade 114-116, DK-8000 Aarhus, Denmark

3. Department of Biological Sciences, University of Bergen , Thormøhlens gate 53A, NO-5006 Bergen, Norway

Abstract

AbstractThe Arctic Ocean is particularly affected by climate change with unknown consequences for primary productivity. Diazotrophs—prokaryotes capable of converting atmospheric nitrogen to ammonia—have been detected in the often nitrogen-limited Arctic Ocean but distribution and community composition dynamics are largely unknown. We performed amplicon sequencing of the diazotroph marker gene nifH from glacial rivers, coastal, and open ocean regions and identified regionally distinct Arctic communities. Proteobacterial diazotrophs dominated all seasons, epi- to mesopelagic depths and rivers to open waters and, surprisingly, Cyanobacteria were only sporadically identified in coastal and freshwaters. The upstream environment of glacial rivers influenced diazotroph diversity, and in marine samples putative anaerobic sulphate-reducers showed seasonal succession with highest prevalence in summer to polar night. Betaproteobacteria (Burkholderiales, Nitrosomonadales, and Rhodocyclales) were typically found in rivers and freshwater-influenced waters, and Delta- (Desulfuromonadales, Desulfobacterales, and Desulfovibrionales) and Gammaproteobacteria in marine waters. The identified community composition dynamics, likely driven by runoff, inorganic nutrients, particulate organic carbon, and seasonality, imply diazotrophy a phenotype of ecological relevance with expected responsiveness to ongoing climate change. Our study largely expands baseline knowledge of Arctic diazotrophs—a prerequisite to understand underpinning of nitrogen fixation—and supports nitrogen fixation as a contributor of new nitrogen in the rapidly changing Arctic Ocean.

Funder

Danish Council for Independent Research

Research Council of Norway

Villum Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3