Substrate complexity buffers negative interactions in a synthetic community of leaf litter degraders

Author:

Abdoli Parmis1,Vulin Clément2,Lepiz Miriam1,Chase Alexander B3,Weihe Claudia1,Rodríguez-Verdugo Alejandra1ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of California Irvine , 321 Steinhaus Hall, Irvine, CA 92697 , United States

2. Department of Fundamental Microbiology, University of Lausanne , Biophore, CH-1015 Lausanne , Switzerland

3. Department of Earth Sciences, Southern Methodist University , 3225 Daniel Avenue, Suite 207, Heroy Hall, Dallas, TX 75205 , United States

Abstract

Abstract Leaf litter microbes collectively degrade plant polysaccharides, influencing land–atmosphere carbon exchange. An open question is how substrate complexity—defined as the structure of the saccharide and the amount of external processing by extracellular enzymes—influences species interactions. We tested the hypothesis that monosaccharides (i.e. xylose) promote negative interactions through resource competition, and polysaccharides (i.e. xylan) promote neutral or positive interactions through resource partitioning or synergism among extracellular enzymes. We assembled a three-species community of leaf litter-degrading bacteria isolated from a grassland site in Southern California. In the polysaccharide xylan, pairs of species stably coexisted and grew equally in coculture and in monoculture. Conversely, in the monosaccharide xylose, competitive exclusion and negative interactions prevailed. These pairwise dynamics remained consistent in a three-species community: all three species coexisted in xylan, while only two species coexisted in xylose, with one species capable of using peptone. A mathematical model showed that in xylose these dynamics could be explained by resource competition. Instead, the model could not predict the coexistence patterns in xylan, suggesting other interactions exist during biopolymer degradation. Overall, our study shows that substrate complexity influences species interactions and patterns of coexistence in a synthetic microbial community of leaf litter degraders.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3