Long-term nitrogen addition in maize monocultures reduces in vitro inhibition of actinomycete standards by soil-borne actinomycetes

Author:

Gieske Miriam F1ORCID,Kinkel Linda L2

Affiliation:

1. Division of Science and Mathematics, University of Minnesota Morris, 600 East 4th St, Morris MN 56267, USA

2. Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, USA

Abstract

ABSTRACT Management of soil microbial communities for enhanced crop disease suppression is an attractive approach to biocontrol, but the effects of agricultural practices on the disease-suppressive potential of the soil microbial community remain unknown. We investigated the effects of long-term nitrogen addition (103 kg ha−1 nitrogen as urea vs. no fertilizer) and crop residue incorporation vs. removal on in vitro antibiotic inhibitory capacities of actinomycetes from 57-year maize (Zea mays L.) monocultures in southeastern Minnesota. We hypothesized that both nitrogen and crop residue addition would increase inhibitor frequencies by increasing microbial population densities and thus increasing the importance of competitive interactions among microbes to their fitness. We found that although soil carbon and nitrogen and microbial densities (actinomycete and total colony-forming units) tended to be greater with nitrogen fertilizer, the frequency of in vitro inhibitory phenotypes among culturable actinomycetes in fertilized plots was approximately half that in non-fertilized plots. Residue incorporation had little to no effect on soil chemistry, microbial density and inhibitor frequency. These results suggest that density-mediated processes alone cannot explain the effects of amendments on inhibitor frequencies. Fitness costs and benefits of inhibitory phenotypes may vary over time and may depend on the type of resource amendment.

Funder

National Institute of Food and Agriculture

Minnesota Department of Agriculture

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Reference66 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3