Composition of soil bacterial and fungal communities in relation to vegetation composition and soil characteristics along an altitudinal gradient

Author:

Bayranvand Mohammad1,Akbarinia Moslem1,Salehi Jouzani Gholamreza2ORCID,Gharechahi Javad3,Kooch Yahya1,Baldrian Petr4ORCID

Affiliation:

1. Faculty of Natural Resources & Marine Sciences; Tarbiat Modares University (TMU), Imam Reza Blvd., 46614-356, Noor, Mazandaran, Iran

2. Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Fahmideh Blvd., P.O. Box:31535-1897, Karaj, Iran

3. Human Genetics Research Centre, Baqiyatallah University of Medical Sciences, Vanak Square, Shahid Nosrati Alley, P.O. Box: 1435916471, Tehran, Iran

4. Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Praha 4 14220, Czech Republic

Abstract

ABSTRACT The objective of the present study was to evaluate how altitudinal gradients shape the composition of soil bacterial and fungal communities, humus forms and soil properties across six altitude levels in Hyrcanian forests. Soil microbiomes were characterized by sequencing amplicons of selected molecular markers. Soil chemistry and plant mycorrhizal type were the two dominant factors explaining variations in bacterial and fungal diversity, respectively. The lowest altitude level had more favorable conditions for the formation of mull humus and exhibited higher N and Ca contents. These conditions were also associated with a higher proportion of Betaproteobacteria, Acidimicrobia, Acidobacteria and Nitrospirae. Low soil and forest floor quality as well as lower bacterial and fungal diversity characterized higher altitude levels, along with a high proportion of shared bacterial (Thermoleophilia, Actinobacteria and Bacilli) and fungal (Eurotiomycetes and Mortierellomycota) taxa. Beech-dominated sites showed moderate soil quality and high bacterial (Alphaproteobacteria, Acidobacteria, Planctomycetes and Bacteroidetes) and fungal (Basidiomycota) diversity. Particularly, the Basidiomycota were well represented in pure beech forests at an altitude of 1500 m. In fertile and nitrogen rich soils with neutral pH, soil quality decreased along the altitudinal gradient, indicating that microbial diversity and forest floor decomposition were likely constrained by climatic conditions.

Funder

Tarbiat Modares University

Iran National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3