Climate-driven shifts in plant and fungal communities can lead to topsoil carbon loss in alpine ecosystems

Author:

Moravcová Andrea12,Barbi Florian1ORCID,Brabcová Vendula1,Cajthaml Tomáš12,Martinović Tijana1ORCID,Soudzilovskaia Nadia34,Vlk Lukáš1,Baldrian Petr1ORCID,Kohout Petr12

Affiliation:

1. Institute of Microbiology, Czech Academy of Science , Vídeňská 1083 , Prague 142 20, Czechia

2. Faculty of Science, Charles University , Albertov 6 , Prague 128 40, Czechia

3. Institute of Environmental Sciences, Leiden University , Rapenburg 70 , Leiden 2311, the Netherlands

4. Centre for Environmental Sciences, Hasselt University , Martelarenlaan 42 , Hasselt 3500, Belgium

Abstract

Abstract Alpine tundra ecosystems suffer from ongoing warming-induced tree encroachment and vegetation shifts. While the effects of tree line expansion on the alpine ecosystem receive a lot of attention, there is also an urgent need for understanding the effect of climate change on shifts within alpine vegetation itself, and how these shifts will consequently affect soil microorganisms and related ecosystem characteristics such as carbon storage. For this purpose, we explored relationships between climate, soil chemistry, vegetation, and fungal communities across seven mountain ranges at 16 alpine tundra locations in Europe. Among environmental factors, our data highlighted that plant community composition had the most important influence on variation in fungal community composition when considered in combination with other factors, while climatic factors had the most important influence solely. According to our results, we suggest that rising temperature, associated with a replacement of ericoid-dominated alpine vegetation by non-mycorrhizal or arbuscular mycorrhizal herbs and grasses, will induce profound changes in fungal communities toward higher dominance of saprotrophic and arbuscular mycorrhizal fungi at the expense of fungal root endophytes. Consequently, topsoil fungal biomass and carbon content will decrease.

Funder

Czech Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3