Defining a core microbial necrobiome associated with decomposing fungal necromass

Author:

Cantoran Anahi1,Maillard François12,Baldrian Petr3ORCID,Kennedy Peter G1ORCID

Affiliation:

1. Department of Plant and Microbial Biology, University of Minnesota , 1479 Gortner Avenue, Saint Paul, Minnesota 55108 , United States

2. Microbial Ecology Group, Department of Biology, Lund University , Naturvetarvägen 22362, Lund , Sweden

3. Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences , Vídenská 1083, Prague 142 20 , Czech Republic

Abstract

Abstract Despite growing interest in fungal necromass decomposition due to its importance in soil carbon retention, whether a consistent group of microorganisms is associated with decomposing necromass remains unresolved. Here, we synthesize knowledge on the composition of the bacterial and fungal communities present on decomposing fungal necromass from a variety of fungal species, geographic locations, habitats, and incubation times. We found that there is a core group of both bacterial and fungal genera (i.e. a core fungal necrobiome), although the specific size of the core depended on definition. Based on a metric that included both microbial frequency and abundance, we demonstrate that the core is taxonomically and functionally diverse, including bacterial copiotrophs and oligotrophs as well as fungal saprotrophs, ectomycorrhizal fungi, and both fungal and animal parasites. We also show that the composition of the core necrobiome is notably dynamic over time, with many core bacterial and fungal genera having specific associations with the early, middle, or late stages of necromass decomposition. While this study establishes the existence of a core fungal necrobiome, we advocate that profiling the composition of fungal necromass decomposer communities in tropical environments and other terrestrial biomes beyond forests is needed to fill key knowledge gaps regarding the global nature of the fungal necrobiome.

Funder

National Science Foundation

University of Minnesota

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3