Glyphosate-based herbicide exposure: effects on gill microbiota of rainbow trout (Oncorhynchus mykiss) and the aquatic bacterial ecosystem

Author:

Bellec Laure1ORCID,Le Du-Carré Jessy2,Almeras Fabrice2,Durand Lucile3,Cambon-Bonavita Marie-Anne3,Danion Morgane2,Morin Thierry2

Affiliation:

1. University of Bordeaux - UMR EPOC 5805 CNRS – Aquatic Ecotoxicology team – Place du Dr Peyneau , F-33120 Arcachon , France

2. ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané-Niort , Unité Virologie, immunologie et écotoxicologie des poissons, F-29280 Plouzané, France

3. University of Brest, Ifremer, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes , F-29280 Plouzané, France

Abstract

AbstractThe herbicide glyphosate has been widely used in the past 40 years, under the assumption that side effects were minimal. In recent years, its impact on microbial compositions and potential indirect effects on plant, animal and human health have been strongly suspected. Glyphosate and co-formulates have been detected in various water sources, but our understanding of their potential effects on aquatic animals is still in its infancy compared with mammals. In this study, we investigated the effect of chronic exposure to an environmentally relevant concentration of glyphosate on bacterial communities of rainbow trout (Oncorhynchus mykiss). Gills, gut contents and gut epithelia were then analyzed by metabarcoding targeting the 16S rRNA gene. Our results revealed that rainbow trout has its own bacterial communities that differ from their surrounding habitats and possess microbiomes specific to these three compartments. The glyphosate-based herbicide treatment significantly affected the gill microbiome, with a decrease in diversity. Glyphosate treatments disrupted microbial taxonomic composition and some bacteria seem to be sensitive to this environmental pollutant. Lastly, co-occurrence networks showed that microbial interactions in gills tended to decrease with chemical exposure. These results demonstrate that glyphosate could affect microbiota associated with aquaculture fish.

Funder

Federal Food Safety and Veterinary Office

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3