Glyphosate and a glyphosate-based herbicide affect bumblebee gut microbiota

Author:

Helander Marjo1ORCID,Jeevannavar Aditya1,Kaakinen Kimmo1,Mathew Suni A1ORCID,Saikkonen Kari2,Fuchs Benjamin2,Puigbò Pere34,Loukola Olli J5,Tamminen Manu1

Affiliation:

1. Department of Biology, University of Turku , 20014 Turku , Finland

2. Biodiversity Unit, University of Turku , 20014 Turku , Finland

3. Nutrition and Health Unit, Eurecat Technology Centre of Catalonia , 43204 Reus, Catalonia , Spain

4. Department of Biochemistry and Biotechnology, Rovira i Virgili University , 43002 Tarragona, Catalonia , Spain

5. Ecology and Genetics Research Unit, University of Oulu , 90014 Oulu , Finland

Abstract

Abstract Pollinator decline is one of the gravest challenges facing the world today, and the overuse of pesticides may be among its causes. Here, we studied whether glyphosate, the world’s most widely used pesticide, affects the bumblebee gut microbiota. We exposed the bumblebee diet to glyphosate and a glyphosate-based herbicide and quantified the microbiota community shifts using 16S rRNA gene sequencing. Furthermore, we estimated the potential sensitivity of bee gut microbes to glyphosate based on previously reported presence of target enzyme. Glyphosate increased, whereas the glyphosate-based herbicide decreased gut microbiota diversity, indicating that negative effects are attributable to co-formulants. Both glyphosate and the glyphosate-based herbicide treatments significantly decreased the relative abundance of potentially glyphosate-sensitive bacterial species Snodgrasella alvi. However, the relative abundance of potentially glyphosate-sensitive Candidatus Schmidhempelia genera increased in bumblebees treated with glyphosate. Overall, 50% of the bacterial genera detected in the bee gut microbiota were classified as potentially resistant to glyphosate, while 36% were classified as sensitive. Healthy core microbiota have been shown to protect bees from parasite infections, change metabolism, and decrease mortality. Thus, the heavy use of glyphosate-based herbicides may have implications on bees and ecosystems.

Funder

Academy of Finland

Finnish Cultural Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3