Microbial community dynamics of a sequentially fed anaerobic digester treating solid organic waste

Author:

Lee HyunWoo1ORCID,Fitamo Temesgen M1ORCID,Nesbø Camilla L1ORCID,Guilford Nigel G H1,Kanger Kärt12ORCID,Yang Minqing Ivy1,Edwards Elizabeth A1ORCID

Affiliation:

1. Department of Chemical Engineering and Applied Chemistry and BioZone, University of Toronto , 200 College Street , Toronto, Ontario, Canada , M5S 3E5

2. Faculty of Science and Technology, University of Tartu , Vanemuise 46 , Tartu 51003, Estonia

Abstract

AbstractA 50-kg scale, high solids anaerobic digester (AD) comprising six sequentially fed leach beds with a leachate recirculation system was operated at 37°C for 88 weeks. The solid feedstock contained a constant fibre fraction (a mix of cardboard, boxboard, newsprint, and fine paper) and varying proportions of food waste. Previously, we reported on the stable operation of this digestion system, where significantly enhanced methane production from the fibre fraction was observed as the proportion of food waste increased. The objective of this study was to identify relationships between process parameters and the microbial community. Increasing food waste led to a large increase in the absolute microbial abundance in the circulating leachate. While 16S rRNA amplicons for Clostridium butyricum were most abundant and correlated with the amount of FW in the system and with the overall methane yield, it was more cryptic Candidatus Roizmanbacteria and Spirochaetaceae that correlated specifically with enhanced methane from the fiber fraction. A faulty batch of bulking agent led to hydraulic channeling, which was reflected in the leachate microbial profiles matching that of the incoming food waste. The system performance and microbial community re-established rapidly after reverting to better bulking agent, illustrating the robustness of the system.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3