Affiliation:
1. INRAE, Univ Montpellier, LBE , 102 Avenue des Etangs, 11100, Narbonne , France
Abstract
Abstract
Phototrophic aggregates containing filamentous cyanobacteria occur naturally, for example, as cryoconite on glaciers and microbialites in fresh or marine waters, but their formation is not fully understood. Laboratory models are now available to reproduce aggregation, that is, the formation of different morphotypes like hemispheroids, microbial mats or sphere-like aggregates we call photogranules. In the model, activated sludge as starting matrix is transformed into aggregates enclosed by a phototrophic layer of growing cyanobacteria. These cyanobacteria were either enriched from the matrix or we added them intentionally. We hypothesize that the resulting morphotype depends on the type and concentration of the added cyanobacteria. When cyanobacteria from mature photogranules were added to activated sludge, photogranulation was not observed, but microbial mats were formed. Photogranulation of sludge could be promoted when adding sufficient quantities of cyanobacterial strains that form clumps when grown as isolates. The cyanobacteria putatively responsible for photogranulation were undetectable or only present in low abundance in the final communities of photogranules, which were always dominated by mat-forming cyanobacteria. We suggest that, in a temporal succession, the ecosystem engineer initiating photogranulation eventually disappears, leaving behind its structural legacy. We conclude that understanding phototrophic aggregate formation requires considering the initial succession stages of the ecosystem development.
Funder
Muséum National d'Histoire Naturelle
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Ecology,Microbiology