Ecological and physiological implications of nitrogen oxide reduction pathways on greenhouse gas emissions in agroecosystems

Author:

Yoon Sukhwan1,Song Bongkeun2,Phillips Rebecca L3,Chang Jin1,Song Min Joon1

Affiliation:

1. Department of Civil and Environmental Engineering, KAIST, 291 Daehakro, Yuseonggu, Daejeon 34141, South Korea

2. Department of Biological Sciences, Virginia Institute of Marine Sciences, College of William and Mary, 1375 Greate Rd, Gloucester Point, VA 23062, USA

3. Ecological Insights Corporation, 130 69th Street SE, Hazelton, ND 58544, USA

Abstract

ABSTRACT Microbial reductive pathways of nitrogen (N) oxides are highly relevant to net emissions of greenhouse gases (GHG) from agroecosystems. Several biotic and abiotic N-oxide reductive pathways influence the N budget and net GHG production in soil. This review summarizes the recent findings of N-oxide reduction pathways and their implications to GHG emissions in agroecosystems and proposes several mitigation strategies. Denitrification is the primary N-oxide reductive pathway that results in direct N2O emissions and fixed N losses, which add to the net carbon footprint. We highlight how dissimilatory nitrate reduction to ammonium (DNRA), an alternative N-oxide reduction pathway, may be used to reduce N2O production and N losses via denitrification. Implications of nosZ abundance and diversity and expressed N2O reductase activity to soil N2O emissions are reviewed with focus on the role of the N2O-reducers as an important N2O sink. Non-prokaryotic N2O sources, e.g. fungal denitrification, codenitrification and chemodenitrification, are also summarized to emphasize their potential significance as modulators of soil N2O emissions. Through the extensive review of these recent scientific advancements, this study posits opportunities for GHG mitigation through manipulation of microbial N-oxide reductive pathways in soil.

Funder

Korea Ministry of Environment

National Research Foundation

U.S. Department of Agriculture

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3