Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities

Author:

Amacker Nathalie1ORCID,Gao Zhilei1,Hu Jie12,Jousset Alexandre L C1,Kowalchuk George A1,Geisen Stefan3

Affiliation:

1. Ecology and Biodiversity group, Institute of Environmental Biology, University of Utrecht , Padualaan 8, 3584 CH Utrecht, The Netherlands

2. UMR 6553 Ecobio, CNRS, University of Rennes, Avenue du Général Leclerc , 35042, Rennes Cedex, France

3. Laboratory of Nematology, Wageningen University & Research , 6700 ES Wageningen, The Netherlands

Abstract

Abstract Predatory protists are major consumers of soil micro-organisms. By selectively feeding on their prey, they can shape soil microbiome composition and functions. While different protists are known to show diverging impacts, it remains impossible to predict a priori the effect of a given species. Various protist traits including phylogenetic distance, growth rate and volume have been previously linked to the predatory impact of protists. Closely related protists, however, also showed distinct prey choices which could mirror specificity in their dietary niche. We, therefore, aimed to estimate the dietary niche breadth and overlap of eight protist isolates on 20 bacterial species in plate assays. To assess the informative value of previously suggested and newly proposed (feeding-related) protist traits, we related them to the impacts of predation of each protist on a protist-free soil bacterial community in a soil microcosm via 16S rRNA gene amplicon sequencing. We could demonstrate that each protist showed a distinct feeding pattern in vitro. Further, the assayed protist feeding patterns and growth rates correlated well with the observed predatory impacts on the structure of soil bacterial communities. We thus conclude that in vitro screening has the potential to inform on the specific predatory impact of selected protists.

Funder

Netherlands Organisation for Scientific Research

China Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3