Salinity reduces bacterial diversity, but increases network complexity in Tibetan Plateau lakes

Author:

Ji Mukan12,Kong Weidong123ORCID,Yue Linyan12,Wang Junbo4,Deng Ye5,Zhu Liping34

Affiliation:

1. Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China

2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, P.R. China

3. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China

4. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China

5. Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China

Abstract

ABSTRACT Salinity is one of the most important environmental factors influencing bacterial plankton communities in lake waters, while its influence on bacterial interactions has been less explored. Here, we investigated the influence of salinity on the bacterial diversity, interactions and community structure in Tibetan Plateau lakes. Our results revealed that saline lakes (salinity between 0.5 and 50 g/L) harboured similar or even higher bacterial diversity compared with freshwater lakes (< 0.5 g/L), while hyper-saline lakes (> 50 g/L) exhibited the lowest diversity. Network analysis demonstrated that hyper-saline lakes exhibited the highest network complexity, with higher total correlation numbers (particularly the negative correlations), but lower network module numbers than freshwater and saline lakes. Furthermore, salinity dominantly explained the bacterial community structure variations in saline lakes, while those in freshwater and hyper-saline lakes were predominately explained by water temperature and geospatial distance, respectively. The core operational taxonomic units (OTUs), which were ubiquitously present in all lakes, were less sensitive to enhancing salinity than the indicative OTUs whose presence was dependent on lake type. Our findings offer a new understanding of how salinity influences bacterial community in plateau lakes.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3