The species evenness of “prey” bacteria correlated with Bdellovibrio-and-like-organisms (BALOs) in the microbial network supports the biomass of BALOs in a paddy soil

Author:

Qian Hang12,Hou Chunli12,Liao Hao12,Wang Li12,Han Shun13,Peng Shaobing4,Chen Wenli13,Huang Qiaoyun12ORCID,Luo Xuesong12

Affiliation:

1. State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China

2. Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China

3. College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

4. Crop Physiology and Production Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China

Abstract

ABSTRACT To seek how soil biotic and abiotic factors which might shape the Bdellovibrio-and-like-organisms community, we sampled paddy soils under different fertilization treatments including fertilization without nitrogen (Control), the nitrogen use treatment (N) and the nitrogen overuse one (HNK) at three rice growing stages. The abundances of BALOs were impacted by the rice-growing stages but not the fertilization treatments. The abundances of Bdellovibrionaceae-like were positively associated with soil moisture, which showed a negative relationship with Bacteriovoracaceae-like bacteria. High-throughput sequencing analysis of the whole bacterial community revealed that the α-diversity of BALOs was not correlated with any soil properties data. Network analysis detected eight families directly linked to BALOs, namely, Pseudomonadaceae, Peptostreptococcaceae, Flavobacteriaceae, Sediment-4, Verrucomicrobiaceae, OM27, Solirubrobacteraceae and Roseiflexaceae. The richness and composition of OTUs in the eight families were correlated with different soil properties, while the evenness of them had a positive effect on the predicted BALO biomass. These results highlighted that the bottom-up control of BALOs in paddy soil at least partially relied on the changes of soil water content and the diversity of bacteria directly linked to BALOs in the microbial network.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3