The association between initial adhesion and cyanobacterial biofilm development

Author:

Faria Sara I1ORCID,Teixeira-Santos Rita1ORCID,Morais João2,Vasconcelos Vitor23,Mergulhão Filipe J1

Affiliation:

1. LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200–465, Porto, Portugal

2. CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal

3. FCUP – Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007, Porto, Portugal

Abstract

ABSTRACT Although laboratory assays provide valuable information about the antifouling effectiveness of marine surfaces and the dynamics of biofilm formation, they may be laborious and time-consuming. This study aimed to determine the potential of short-time adhesion assays to estimate how biofilm development may proceed. The initial adhesion and cyanobacterial biofilm formation were evaluated using glass and polymer epoxy resin surfaces under different hydrodynamic conditions and were compared using linear regression models. For initial adhesion, the polymer epoxy resin surface was significantly associated with a lower number of adhered cells compared with glass (-1.27 × 105 cells.cm–2). Likewise, the number of adhered cells was significantly lower (-1.16 × 105 cells.cm–2) at 185 than at 40 rpm. This tendency was maintained during biofilm development and was supported by the biofilm wet weight, thickness, chlorophyll a content and structure. Results indicated a significant correlation between the number of adhered and biofilm cells (r = 0.800, p < 0.001). Moreover, the number of biofilm cells on day 42 was dependent on the number of adhered cells at the end of the initial adhesion and hydrodynamic conditions (R2 = 0.795, p < 0.001). These findings demonstrate the high potential of initial adhesion assays to estimate marine biofilm development.

Funder

IDB

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3