Microbiome convergence and deterministic community assembly along successional biocrust gradients on potash salt heaps

Author:

Ohan Juliette A12ORCID,Siani Roberto12,Kurth Julia K12ORCID,Sommer Veronika34,Glaser Karin3,Karsten Ulf3,Schloter Michael12,Schulz Stefanie1

Affiliation:

1. Research Unit for Comparative Microbiome Analysis, Helmholtz Center Munich, Research Center for Environmental Health , Ingolstädter Landstraße 1, 85764 Neuherberg, Germany

2. Chair of Environmental Microbiology, Department of Life Science Systems, School of Life Sciences, Technical University Munich , Alte Akademie 8, 85354 Freising, Germany

3. Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock , Albert-Einstein-Strasse 3, 18051 Rostock, Germany

4. upi UmweltProjekt Ingenieurgesellschaft mbH , Breite Straße 30, 39576 Stendal, Germany

Abstract

Abstract Potash mining, typically performed for agricultural fertilizer production, can create piles of residual salt waste that are ecologically detrimental and difficult to revegetate. Biological soil crusts (biocrusts) have been found growing on and around these heaps, suggesting resilience to the hypersaline environment. We set out to understand the community dynamics of biocrust formation by examining two succesionary salinity gradients at historical mining sites using a high throughput amplicon sequencing. Bare heaps were distinct, with little overlap between sites, and were characterized by high salinity, low nutrient availability, and specialized, low diversity microbial communities, dominated by Halobacteria, Chloroflexia, and Deinococci. ‘Initial’ stages of biocrust development were dominated by site-specific Cyanobacteria, with significant overlap between sites. Established biocrusts were the most diverse, with large proportions of Alphaproteobacteria, Anaerolineae, and Planctomycetacia. Along the salinity gradient at both sites, salinity decreased, pH decreased, and nutrients and Chlorophyll a increased. Microbiomes between sites converged during succession and community assembly process analysis revealed biocrusts at both sites were dominated by deterministic, niche-based processes; indicating a high degree of phylogenetic turnover. We posit early cyanobacterial colonization is essential for biocrust initiation, and facilitates later establishment of plant and other higher-level biota.

Funder

Deutsche Bundesstiftung Umwelt

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3