Tannins from senescent Rhizophora mangle mangrove leaves have a distinctive effect on prokaryotic and eukaryotic communities in a Distichlis spicata salt marsh soil

Author:

Zhang Qiu-Fang123,Laanbroek Hendrikus J24ORCID

Affiliation:

1. College of Oceanology and Food Science, Quanzhou Normal University, 398 Donghai Street, Quanzhou 362000, China

2. Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands

3. Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou 362100, China

4. Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Abstract

ABSTRACT Due to climate warming, tannin-rich Rhizophora mangle migrates into tannin-poor salt marshes, where the tannins interfere with the biogeochemistry in the soil. Changes in biogeochemistry are likely associated with changes in microbial communities. This was studied in microcosms filled with salt marsh soil and amended with leaf powder, crude condensed tannins, purified condensed tannins (PCT), all from senescent R. mangle leaves, or with tannic acid. Size and composition of the microbial communities were determined by denaturing gradient gel electrophoresis, high-throughput sequencing and real-time PCR based on the 16S and 18S rRNA genes. Compared with the control, the 16S rRNA gene abundance was lowered by PCT, while the 18S rRNA gene abundance was enhanced by all treatments. The treatments also affected the composition of the 16S rRNA and 18S rRNA gene assemblies, but the effects on the 18S rRNA gene were greater. The composition of the 18S rRNA gene, but not of the 16S rRNA gene, was significantly correlated with the mineralization of carbon, nitrogen and phosphorus. Distinctive microbial groups emerged during the different treatments. This study revealed that migration of mangroves may affect both the prokaryotic and the eukaryotic communities in salt marsh soils, but that the effects on the eukaryotes will likely be greater.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3