Affiliation:
1. Centre for Ecology and Conservation, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
2. School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
Abstract
ABSTRACT
The Bacillus cereus group encompasses beneficial and harmful species in diverse niches and has a much debated taxonomy. Investigating whether selection has led to ecological divergence between phylogenetic clades can help understand the basis of speciation, and has implications for predicting biological safety across this group. Using three most terrestrial species in this group (B. cereus, Bacillus thuringiensis and Bacillus mycoides) we charactererized ecological specialization in terms of resource use, thermal adaptation and fitness in different environmental conditions and tested whether taxonomic species or phylogenetic clade best explained phenotypic variation. All isolates grew vigorously in protein rich media and insect cadavers, but exploitation of soil or plant derived nutrients was similarly weak for all. For B. thuringiensis and B. mycoides, clade and taxonomic species were important predictors of relative fitness in insect infections. Fully psychrotolerant isolates could outcompete B. thuringiensis in insects at low temperature, although psychrotolerance predicted growth in artificial media better than clade. In contrast to predictions, isolates in the Bacillus anthracis clade had sub-optimal growth at 37°C. The common ecological niche in these terrestrial B. cereus species is the ability to exploit protein rich resources such as cadavers. However, selection has led to different phylogenetic groups developing different strategies for accessing this resource. Thus, clades, as well as traditional taxonomic phenotypes, predict biologically important traits.
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Ecology,Microbiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献