Plant secondary compound- and antibiotic-induced community disturbances improve the establishment of foreign gut microbiota

Author:

Stapleton Tess E1ORCID,Kohl Kevin D2,Dearing M Denise1

Affiliation:

1. School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA

2. Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract

Abstract Fecal transplants are a powerful tool for manipulating the gut microbial community, but how these non-native communities establish in the presence of an intact host gut microbiome is poorly understood. We explored the microbiome of desert woodrats (Neotoma lepida) to determine whether disrupting existing microbial communities using plant secondary compounds (PSCs) or antibiotics increases the establishment of foreign microbes. We administered two fecal transplants between natural populations of adult woodrats that harbor distinct gut microbiota and have different natural dietary exposure to PSCs. First, we administered fecal transplants to recipients given creosote resin, a toxin found in the natural diet of our “donor” population, and compared the gut microbial communities to animals given fecal transplants and control diet using 16S rRNA gene sequencing. Second, we disrupted the gut microbial community of the same recipients with an antibiotic prior to fecal transplants. We found that gut microbial communities of woodrats disrupted with PSCs or antibiotics resembled that of donors more closely than control groups. PSC treatment also enriched microbes associated with metabolizing dietary toxins in transplant recipients. These results demonstrate that microbial community disturbances by PSCs or antibiotics are sufficient to facilitate establishment of foreign microbes in animals with intact microbiomes.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3