Who eats what? Unravelling microbial conversion of coal to methane

Author:

Vick Silas H W12ORCID,Gong Se2,Sestak Stephen2,Vergara Tania J2,Pinetown Kaydy L2,Li Zhongsheng2,Greenfield Paul2,Tetu Sasha G1,Midgley David J2,Paulsen Ian T1

Affiliation:

1. Department of Molecular Sciences, Macquarie University, North Ryde, Australia

2. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia

Abstract

ABSTRACTMicrobial communities in subsurface coal seams are responsible for the conversion of coal organic matter to methane. This process has important implications for both energy production and our understanding of global carbon cycling. Despite the environmental and economic importance of this process, little is known about which components of the heterogeneous coal organic matter are biodegradable under methanogenic conditions. Similarly, little is known about which taxa in coal seams carry out the initial stages of coal organics degradation. To identify the biodegradable components of coal and the microorganisms responsible for their breakdown, a subbituminous coal was fractionated into a number of chemical compound classes which were used as the sole carbon source for growth by a coal seam microbial community. This study identifies 65 microbial taxa able to proliferate on specific coal fractions and demonstrates a surprising level of substrate specificity among members of this coal-degrading microbial consortia. Additionally, coal kerogen, the solvent-insoluble organic component of coal often considered recalcitrant to microbial degradation, appeared to be readily converted to methane by microbial degradation. These findings challenge our understanding of coal organic matter catabolism and provide insights into the catabolic roles of individual coal seam bacteria.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3