Water management and phenology influence the root-associated rice field microbiota

Author:

Chialva Matteo1ORCID,Ghignone Stefano2,Cozzi Paolo3ORCID,Lazzari Barbara3,Bonfante Paola1,Abbruscato Pamela4,Lumini Erica2ORCID

Affiliation:

1. Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy

2. Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), Viale P.A. Mattioli 25, I-10125 Torino, Italy

3. Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Via E. Bassini 15/Via A. Corti 12, I-20133 Milano, Italy

4. Rice Genomics Unit, PTP Science Park, Via Einstein Loc. Cascina Codazza, I-26900 Lodi, Italy

Abstract

ABSTRACTMicrobial communities associated with plants are greatly influenced by water availability in soil. In flooded crops, such as rice, the impact of water management on microbial dynamics is not fully understood. Here, we present a comprehensive study of the rice microbiota investigated in an experimental field located in one of the most productive areas of northern Italy. The microbiota associated with paddy soil and root was investigated using 454 pyrosequencing of 16S, ITS and 18S rRNA gene amplicons under two different water managements, upland (non-flooded, aerobic) and lowland (traditional flooding, anaerobic), at three plant development stages. Results highlighted a major role of the soil water status in shaping microbial communities, while phenological stage had low impacts. Compositional shifts in prokaryotic and fungal communities upon water management consisted in significant abundance changes of Firmicutes, Methanobacteria, Chloroflexi, Sordariomycetes, Dothideomycetes and Glomeromycotina. A vicariance in plant beneficial microbes and between saprotrophs and pathotrophs was observed between lowland and upland. Moreover, through network analysis, we demonstrated different co-abundance dynamics between lowland and upland conditions with a major impact on microbial hubs (strongly interconnected microbes) that fully shifted to aerobic microbes in the absence of flooding.

Funder

RISINNOVA

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3