An arsRB resistance operon confers tolerance to arsenite in the environmental isolate Terribacillus sp. AE2B 122

Author:

Escobar-Niño Almudena12,Sánchez-Barrionuevo Leyre12,Torres-Torres José Miguel1,Clemente Rafael3,Gutiérrez Gabriel1,Mellado Encarnación2,Cánovas David1ORCID

Affiliation:

1. Department of Genetics, Faculty of Biology, University of Seville, Seville, 41012, Spain

2. Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, 41012, Spain

3. CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, 30100, Spain

Abstract

ABSTRACT Terribacillus sp. AE2B 122 is an environmental strain isolated from olive-oil agroindustry wastes. This strain displays resistance to arsenic, one of the most ubiquitous carcinogens found in nature. Terribacillus sp. AE2B 122 possesses an unusual ars operon, consisting of the transcriptional regulator (arsR) and arsenite efflux pump (arsB) but no adjacent arsenate reductase (arsC) locus. Expression of arsR and arsB was induced when Terribacillus was exposed to sub-lethal concentrations of arsenate. Heterologous expression of the arsB homologue in Escherichia coli  ∆arsRBC demonstrated that it conferred resistance to arsenite and reduced the accumulation of arsenic inside the cells. Two members of the arsC-like family (Te3384 and Te2854) found in the Terribacillus genome were not induced by arsenic, but their heterologous expression in E. coli ∆arsC and ∆arsRBC increased the accumulation of arsenic in both strains. We found that both Te3384 and Te2854 slightly increased resistance to arsenate in E. coli ∆arsC and ∆arsRBC, possibly by chelation of arsenic or by increasing the resistance to oxidative stress. Finally, arsenic speciation assays suggest that Terribacillus is incapable of arsenate reduction, in agreement with the lack of an arsC homologue in the genome.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3