Bacterial community dynamics of tomato hydroponic greenhouses infested with hairy root disease

Author:

Vargas Pablo12ORCID,Bosmans Lien3,Van Calenberge Bart4,Van Kerckhove Stefan5,Lievens Bart12,Rediers Hans12

Affiliation:

1. CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium

2. Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium

3. Research Station Hoogstraten, Voort 71, B-2328 Meerle, Belgium

4. Research Station for Vegetable Production, Duffelsesteenweg 101, B-2860 Sint-Katelijne-Waver, Belgium

5. Scientia Terrae, Fortsesteenweg 30A, B-2860 Sint-Katelijne-Waver, Belgium

Abstract

ABSTRACT The rhizosphere is a complex ecosystem consisting of microbes in the interface between growth medium and plant roots, which affects plant productivity and health. This is one of the few studies analysing bacterial communities present in the rhizosphere of hydroponically grown plants. Tomato grown under hydroponic conditions is prone to hairy root disease (HRD) that is caused by rhizogenic Agrobacterium biovar 1 strains. In this study, using high-throughput amplicon sequencing of partial ribosomal RNA (rRNA) genes, we aimed to characterize bacterial communities in rockwool samples obtained from healthy or HRD-infested tomato during an entire growing season. Alpha diversity of rockwool increased in direct relation with time and samples obtained from healthy greenhouses presented a significantly lower alpha diversity than those from HRD-infested greenhouses. Beta diversity showed that bacterial community composition changed throughout the growing season. Amplicon Sequence Variants (ASVs) identified as rhizogenic Agrobacterium bv. 1 were more prevalent in HRD-infected greenhouses. Conversely, ASVs identified as Paenibacillus, previously identified as biocontrol organisms of rhizogenic agrobacteria, were more prevalent in healthy greenhouses. Altogether, our study greatly contributes to the knowledge of bacterial communities in rockwool hydroponics.

Funder

Western Integrated Pest Management Center

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3