Soil microbial communities are sensitive to differences in fertilization intensity in organic and conventional farming systems

Author:

Lori Martina1ORCID,Hartmann Martin2ORCID,Kundel Dominika1,Mayer Jochen3,Mueller Ralf C3ORCID,Mäder Paul1,Krause Hans-Martin1

Affiliation:

1. Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL) , Ackerstrasse 113, 5070 Frick, Switzerland

2. Department of Environmental Systems Science, ETH Zürich , Universitätstrasse 2, 8092 Zürich, Switzerland

3. Agroecology and Environment, Agroscope , Reckenholzstrasse 191, 8046 Zürich, Switzerland

Abstract

AbstractIntensive agriculture has increased global food production, but also impaired ecosystem services and soil biodiversity. Organic fertilization, essential to organic and integrated farming, can provide numerous benefits for soil quality but also compromise the environment by polluting soils and producing greenhouse gases through animal husbandry. The need for reduced stocking density is inevitably accompanied by lower FYM inputs, but little research is available on the impact of these effects on the soil microbiome. We collected soil samples from winter wheat plots of a 42-year-old long-term trial comparing different farming systems receiving farmyard manure at two intensities and measured soil quality parameters and microbial community diversity through DNA metabarcoding. High-input fertilization, corresponding to 1.4 livestock units (LU) improved the soil’s nutritional status and increased soil microbial biomass and respiration when compared to low-input at 0.7 LU. Bacterial and fungal α-diversity was largely unaffected by fertilization intensity, whereas their community structure changed consistently, accompanied by an increase in the bacterial copiotroph-to-oligotroph ratio in high-input systems and by more copiotrophic indicator OTUs associated with high than low-input. This study shows that reduced nutrient availability under low-input selects oligotrophic microbes efficiently obtaining nutrients from various carbon sources; a potentially beneficial trait considering future agroecosystems.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3