Tannin supplementation modulates the composition and function of ruminal microbiome in lambs infected with gastrointestinal nematodes

Author:

Corrêa Patricia Spoto123,Mendes Lucas William2,Lemos Leandro Nascimento2,Crouzoulon Pierre1,Niderkorn Vincent4,Hoste Hervé5,Costa-Júnior Livio Martins6,Tsai Siu Mui2,Faciola Antonio P,Abdalla Adibe Luiz1,Louvandini Helder13

Affiliation:

1. Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 13400–970, Piracicaba, SP, Brazil

2. Laboratory of Molecular Cell Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, 13400–970, Piracicaba, SP, Brazil

3. Department of Animal Sciences, University of Florida, Gainesville 32611, United States

4. Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès Champanelle, France

5. INRAE, UMR, Chemin des Capelles – BP 87614 – 31 076 – Toulouse, France

6. Biological and Health Center, Federal University of Maranhao, Avenida dos Portugueses, 1966 - Vila Bacanga, 65080-805, São Luís - Maranhao, Brazil

Abstract

ABSTRACT This study was carried out to evaluate the effects of tannin supplementation on ruminal microbiota of sixteen lambs infected and non-infected with Haemonchus contortus and Trichostrongylus colubriformis. Animals were fed with hay, concentrate and supplemented with Acacia mearnsii (A. mearnsii). The animals were divided into four treatments: two control groups without infection, either receiving A. mearnsii (C+) or not (C-), and two infected groups, one with A. mearnsii (I+) and another without A. mearnsii (I-). Ruminal short-chain fatty acids (SCFA) and metagenome sequencing of ruminal microbiota were used to evaluate the effect of tannin and infection on ruminal microbiome. For SCFA, differences were observed only with A. mearnsii. Total SCFA and acetate molar percentage were decreased in C+ and I+ (P<0.05). Butyrate, valerate and isovalerate were higher in lambs that received A. mearnsii in the diet (P<0.05). The infection changed the microbiome structure and decreased the abundance of butyrate-producing microorganisms. In addition, A. mearnsii supplementation also affected the structure the microbial community, increasing the diversity and abundance of the butyrate-producing and probiotics bacteria, amino acid metabolic pathways, purine, pyrimidine and sphingolipid metabolism. Together, our findings indicate that A. mearnsii supplementation modulates important groups related to nitrogen, amino acid, purine and pyrimidine metabolism, in rumen microbiome, affected by gastrointestinal nematodes infection in lambs.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3