Larval density affects phenotype and surrounding bacterial community without altering gut microbiota in Drosophila melanogaster

Author:

Henry Y12ORCID,Tarapacki P1,Colinet H1ORCID

Affiliation:

1. ECOBIO - UMR 6553, Univ Rennes 1, CNRS, Rennes, France

2. Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland

Abstract

ABSTRACT Larval crowding represents a complex stressful situation arising from inter-individual competition for time- and space-limited resources. The foraging of a large number of individuals may alter the chemical and bacterial composition of food and in turn affect individual's traits. Here we used Drosophila melanogaster to explore these assumptions. First, we used a wide larval density gradient to investigate the impact of crowding on phenotypical traits. We confirmed that high densities increased development time and pupation height, and decreased viability and body mass. Next, we measured concentrations of common metabolic wastes (ammonia, uric acid) and characterized bacterial communities, both in food and in larvae, for three contrasting larval densities (low, medium and high). Ammonia concentration increased in food from medium and high larval densities, but remained low in larvae regardless of the larval density. Uric acid did not accumulate in food but was detected in larvae. Surprisingly, bacterial composition remained stable in guts of larvae whatever their rearing density, although it drastically changed in the food. Overall, these results indicate that crowding deeply affects individuals, and also their abiotic and biotic surroundings. Environmental bacterial communities likely adapt to altered nutritional situations resulting from crowding, putatively acting as scavengers of larval metabolic wastes.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3