Invertebrate decline reduces bacterial diversity associated with leaves and flowers

Author:

Junker Robert R12ORCID,Eisenhauer Nico34ORCID,Schmidt Anja345ORCID,Türke Manfred34ORCID

Affiliation:

1. Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany

2. Department of Biosciences, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria

3. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany

4. Institute of Biology, Leipzig University, Puschstr. 4, 04103 Leipzig, Germany

5. Helmholtz Centre for Environmental Research – UFZ, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120 Halle, Germany

Abstract

Abstract Defaunation including invertebrate decline is one of the major consequences of anthropogenic alterations of the environment. Despite recent reports of ubiquitous invertebrate decline, the ecosystem consequences have been rarely documented. We exposed standardized plant communities grown in the iDiv Ecotron to different levels of invertebrate numbers and biomass and tracked effects on the diversity and composition of bacterial communities associated with flowers and leaves of Scorzoneroides autumnalis and Trifolium pratense using next-generation 16S rRNA gene amplicon sequencing. Our data indicate that invertebrate decline reduces bacterial richness and β-diversity and alters community composition. These effects may result from direct effects of invertebrates that may serve as dispersal agents of bacteria; or from indirect effects where animal-induced changes in the plant's phenotype shape the niches plants provide for bacterial colonizers. Because bacteria are usually not dispersal limited and because species sorting, i.e. niche-based processes, has been shown to be a dominant process in bacterial community assembly, indirect effects may be more likely. Given that a healthy microbiome is of fundamental importance for the well-being of plants, animals (including humans) and ecosystems, a loss of bacterial diversity may be a dramatic yet previously unknown consequence of current invertebrate decline.

Funder

Leipzig University

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3