Seasonal blooms of neutrophilic Betaproteobacterial Fe(II) oxidizers and Chlorobi in iron-rich coal mine drainage sediments

Author:

Blackwell Nia1ORCID,Perkins William1,Palumbo-Roe Barbara2,Bearcock Jenny2,Lloyd Jonathan R3,Edwards Arwyn14

Affiliation:

1. Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, UK

2. British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham, NG12 5GG, UK

3. Williamson Research Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK

4. Institute of Biological, Environment Rural Science (and Interdisciplinary Centre for Environmental Microbiology, and Centre for Glaciology), Aberystwyth University, Aberystwyth, UK

Abstract

Abstract Waters draining from flooded and abandoned coal mines in the South Wales Coalfield (SWC), are substantial sources of pollution to the environment characterized by circumneutral pH and elevated dissolved iron concentrations (>1 mg L−1). The discharged Fe precipitates to form Fe(III) (oxyhydr)oxides which sustain microbial communities. However, while several studies have investigated the geochemistry of mine drainage in the SWC, less is known about the microbial ecology of the sites presenting a gap in our understanding of biogeochemical cycling and pollutant turnover. This study investigated the biogeochemistry of the Ynysarwed mine adit in the SWC. Samples were collected from nine locations within sediment at the mine entrance from the upper and lower layers three times over one year for geochemical and bacterial 16S rRNA gene sequence analysis. During winter, members of the Betaproteobacteria bloomed in relative abundance (>40%) including the microaerophilic Fe(II)-oxidizing genus Gallionella. A concomitant decrease in Chlorobi-associated bacteria occurred, although by summer the community composition resembled that observed in the previous autumn. Here, we provide the first insights into the microbial ecology and seasonal dynamics of bacterial communities of Fe(III)-rich deposits in the SWC and demonstrate that neutrophilic Fe(II)-oxidizing bacteria are important and dynamic members of these communities.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3