Bacterial communities vary across populations and tissue type in red mangroves (Rhizophora mangle, Rhizophoraceae) along an expanding front

Author:

Scherer Brendan P1ORCID,Mason Olivia U2ORCID,Mast Austin R3

Affiliation:

1. Florida State University , 319 Stadium Drive , Tallahassee, FL 32304, United States

2. Department of Earth, Ocean and Atmospheric Sciences, Florida State University , 1011 Academic Way, Tallahassee, FL 32304, United States

3. Department of Biological Sciences, Florida State University , 319 Stadium Drive, Tallahassee, FL 32304, United States

Abstract

Abstract Plant-associated microbial communities may be important sources of functional diversity and genetic variation that influence host evolution. Bacteria provide benefits for their hosts, yet in most plant systems we know little about their taxonomic composition or variation across tissues and host range. Red Mangrove (Rhizophora mangle L.) is a vital coastal plant species that is currently expanding poleward and with it, perhaps, its microbiome. We explored variability in bacterial communities across tissues, individuals, and populations. We collected samples from six sample types from 5 to 10 individuals at each of three populations and used 16S rRNA gene (iTag) sequencing to describe their bacterial communities. Core community members and dominant bacterial classes were determined for each sample type. Pairwise PERMANOVA of Bray–Curtis dissimilarity and Indicator Species Analysis revealed significant differences in bacterial communities between sample types and populations. We described the previously unexplored microbiome of the reproductive tissues of R. mangle. Populations and most sample types were associated with distinct communities. Bacterial communities associated with R. mangle are influenced by host geography and sample type. Our study provides a foundation for future work exploring the functional roles of these microbes and their relevance to biogeochemical cycling.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3