Upstream cascade reservoirs drive temporal beta diversity increases through species loss in a dammed river

Author:

Guimarães Durán Carolina Leite1ORCID,Lansac-Tôha Fernando Miranda1,Meira Bianca Ramos1,Santana Loiani Oliveira1,Oliveira Felipe Rafael1,Matos Matheus Henrique de Oliveira1,Velho Luiz Felipe Machado1

Affiliation:

1. Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), Department of Biology, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia), Universidade Estadual de Maringá (UEM). Av. Colombo , 5790, CEP 87020-900 . Maringá, Parana State, Brazil

Abstract

Abstract Changes in the biodiversity of aquatic environments over time and space due to human activities are a topic of theoretical and conservational interest in ecology. Thus, variation in taxonomic beta diversity of the planktonic ciliates community was investigated along a temporal and spatial gradient in two subsystems of a Neotropical floodplain, one impacted by dams (Paraná) and the other free of them along its course (Ivinhema). For the spatial analysis, the Paraná subsystem did not show a significant decrease in beta diversity, presenting a pattern like that observed for the Ivinhema subsystem. Therefore, biotic homogenization was not observed for the ciliate's community downstream of the dams. It was noted that there was a fluctuation in the relevance of the components of beta diversity, regardless of the subsystem analyzed. For the temporal analysis there was a significant change in species composition from the first to the last year investigated, essentially for the subsystem impacted by dams, and that this was determined mainly by species loss. Although spatial beta diversity remained high without a clear process of biotic homogenization, dams promoted remarkable changes in ciliate species composition over the years mainly by continuous loss of species.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3