Abstract
Abstract
The statistical analysis of omics data poses a great computational challenge given their ultra–high-dimensional nature and frequent between-features correlation. In this work, we extended the iterative sure independence screening (ISIS) algorithm by pairing ISIS with elastic-net (Enet) and 2 versions of adaptive elastic-net (adaptive elastic-net (AEnet) and multistep adaptive elastic-net (MSAEnet)) to efficiently improve feature selection and effect estimation in omics research. We subsequently used genome-wide human blood DNA methylation data from American Indian participants in the Strong Heart Study (n = 2235 participants; measured in 1989-1991) to compare the performance (predictive accuracy, coefficient estimation, and computational efficiency) of ISIS-paired regularization methods with that of a bayesian shrinkage and traditional linear regression to identify an epigenomic multimarker of body mass index (BMI). ISIS-AEnet outperformed the other methods in prediction. In biological pathway enrichment analysis of genes annotated to BMI-related differentially methylated positions, ISIS-AEnet captured most of the enriched pathways in common for at least 2 of all the evaluated methods. ISIS-AEnet can favor biological discovery because it identifies the most robust biological pathways while achieving an optimal balance between bias and efficient feature selection. In the extended SIS R package, we also implemented ISIS paired with Cox and logistic regression for time-to-event and binary endpoints, respectively, and a bootstrap approach for the estimation of regression coefficients.
Funder
European Funds for Regional Development, the Third AstraZeneca Award for Spanish Young Researchers, and the State Agency for Research
Spanish Ministry of Science and Innovation
Instituto de Salud Carlos III
Strategic Action for Research in Health Sciences
“la Caixa” Foundation
National Institute of Environmental Health Sciences
National Heart, Lung, and Blood Institute
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献