Power to the people: why person-generated health data are important for pharmacoepidemiology

Author:

Dreyer Nancy AORCID,Blackburn Stella C FORCID

Abstract

Abstract Person-generated health data (PGHD) are valuable for studying outcomes relevant to everyday living, for obtaining information not otherwise available, for long-term follow-up, and in situations where decisions cannot wait for traditional clinical research to be completed. While there is no dispute that these data are subject to bias, insights gained may be better than having an information void, provided the biases are understood and addressed. People will share information known uniquely to them about exposures that may affect drug tolerance, safety, and effectiveness (eg, nonprescription and complementary medications, alcohol, tobacco, illicit drugs, exercise, etc). Patients may be the best source of safety information when long-term follow-up is needed (eg, the 5- to 15-year follow-up required for some gene therapies). Validation studies must be performed to evaluate what people can accurately report and when supplementary confirmation information is needed. However, PGHD has already proven valuable in quantifying and contrasting COVID-19 vaccine benefits and risks and for evaluating disease transmission and the accuracy of COVID-19 testing. Going forward, PGHD will be used for patient-measured and patient-relevant outcomes, including for regulatory purposes, and will be linked to broader health data networks using tokenization, becoming a mainstay for signals about risks and benefits for diverse populations. This article is part of a Special Collection on Pharmacoepidemiology.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3