Age Differences in Multimodal Quantitative Sensory Testing and Associations With Brain Volume

Author:

Johnson Alisa J12ORCID,Wilson Abigail T34,Laffitte Nodarse Chavier1,Montesino-Goicolea Soamy1,Valdes-Hernandez Pedro A12,Somerville Jessie1,Peraza Julio A1,Fillingim Roger B12,Bialosky Joel34,Cruz-Almeida Yenisel12ORCID

Affiliation:

1. Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA

2. Department of Community Dentistry & Behavioral Sciences, College of Dentistry, University of Florida, Gainesville, Florida, USA

3. Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA

4. Brooks Rehabilitation–College of Public Health and Health Professions Research Collaboration, Gainesville, Florida, USA

Abstract

Abstract Background and Objectives Somatosensory function is critical for successful aging. Prior studies have shown declines in somatosensory function with age; however, this may be affected by testing site, modality, and biobehavioral factors. While somatosensory function declines are associated with peripheral nervous system degradation, little is known regarding correlates with the central nervous system and brain structure in particular. The objectives of this study were to examine age-related declines in somatosensory function using innocuous and noxious stimuli, across 2 anatomical testing sites, with considerations for affect and cognitive function, and associations between somatosensory function and brain structure in older adults. Research Design and Methods A cross-sectional analysis included 84 “younger” (n = 22, age range: 19–24 years) and “older” (n = 62, age range: 60–94 years) healthy adults who participated in the Neuromodulatory Examination of Pain and Mobility Across the Lifespan study. Participants were assessed on measures of somatosensory function (quantitative sensory testing), at 2 sites (metatarsal and thenar) using standardized procedures, and completed cognitive and psychological function measures and structural magnetic resonance imaging. Results Significant age × test site interaction effects were observed for warmth detection (p = .018, ηp2= 0.10) and heat pain thresholds (p = .014, ηp2= 0.12). Main age effects were observed for mechanical, vibratory, cold, and warmth detection thresholds (ps < .05), with older adults displaying a loss of sensory function. Significant associations between somatosensory function and brain gray matter structure emerged in the right occipital region, the right temporal region, and the left pericallosum. Discussion and Implications Our findings indicate healthy older adults display alterations in sensory responses to innocuous and noxious stimuli compared to younger adults and, furthermore, these alterations are uniquely affected by anatomical site. These findings suggest a nonuniform decline in somatosensation in older adults, which may represent peripheral and central nervous system alterations part of aging processes.

Funder

National Institutes of Health

National Institute on Aging

National Science Foundation Cooperative Agreement

Foundation for Physical Therapy Research

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Energy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3