Force balance in numerical geodynamo simulations: a systematic study

Author:

Schwaiger T1ORCID,Gastine T1,Aubert J1ORCID

Affiliation:

1. Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris-Diderot, CNRS, 1 rue Jussieu, F-75005 Paris, France

Abstract

SUMMARY Dynamo action in the Earth’s outer core is expected to be controlled by a balance between pressure, Coriolis, buoyancy and Lorentz forces, with marginal contributions from inertia and viscous forces. Current numerical simulations of the geodynamo, however, operate at much larger inertia and viscosity because of computational limitations. This casts some doubt on the physical relevance of these models. Our work aims at finding dynamo models in a moderate computational regime which reproduce the leading-order force balance of the Earth. By performing a systematic parameter space survey with Ekman numbers in the range 10−6 ≤ E ≤ 10−4, we study the variations of the force balance when changing the forcing (Rayleigh number, Ra) and the ratio between viscous and magnetic diffusivities (magnetic Prandtl number, Pm). For dipole-dominated dynamos, we observe that the force balance is structurally robust throughout the investigated parameter space, exhibiting a quasi-geostrophic (QG) balance (balance between Coriolis and pressure forces) at zeroth order, followed by a first-order Magneto-Archimedean-Coriolis (MAC) balance between the ageostrophic Coriolis, buoyancy and Lorentz forces. At second order, this balance is disturbed by contributions from inertia and viscous forces. Dynamos with a different sequence of the forces, where inertia and/or viscosity replace the Lorentz force in the first-order force balance, can only be found close to the onset of dynamo action and in the multipolar regime. To assess the agreement of the model force balance with that expected in the Earth’s core, we introduce a parameter quantifying the distance between the first- and second-order forces. Analysis of this parameter shows that the strongest-field dynamos can be obtained close to the onset of convection (Ra close to critical) and in situations of reduced magnetic diffusivity (high Pm). Decreasing the Ekman number gradually expands this regime towards higher supercriticalities and lower values of Pm. Our study illustrates that most classical numerical dynamos are controlled by a QG-MAC balance, while cases where viscosity and inertia play a dominant role are the exception rather than the norm.

Funder

GENCI-CINES

H2020 Marie Skłodowska-Curie Actions

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shadowgraph Measurements of Rotating Convective Planetary Core‐Style Flows;Journal of Geophysical Research: Planets;2024-09

2. Numerical Simulations of Magnetic Effects on Zonal Flows in Giant Planets;Journal of Geophysical Research: Planets;2024-08

3. Dynamic regimes in planetary cores: τ diagrams;Comptes Rendus. Géoscience;2024-05-21

4. Regionally-triggered geomagnetic reversals;Scientific Reports;2024-04-26

5. Asymptotic scaling relations for rotating spherical convection with strong zonal flows;Journal of Fluid Mechanics;2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3