Proximate Factors Determining Age and Mass at Fledging in Rhinoceros Auklets (Cerorhinca Monocerata): Intra- and Interyear Variations

Author:

Deguchi Tomohiro1,Takahashi Akinori2,Watanuki Yutaka1

Affiliation:

1. Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan

2. National Institute of Polar Research, Itabashi, Tokyo 173-8515, Japan

Abstract

Abstract In alcids, growth rate and hatching date of chicks appear to affect fledging age and mass. Underlying mechanisms are hypothesized to be (1) critical wing length at fledging for postfledging survival, (2) synchronization of fledging to dilute predation risk, and (3) variable parental provisioning according to timing of breeding. To elucidate the effects of growth rate and hatching date on fledging age and mass, and to test those mechanistic hypotheses, we measured chick growth and fledging periods in Rhinoceros Auklets (Cerorhinca monocerata) at Teuri Island from 1995 to 2000. The multiple-linear regression analysis showed that intrayear variations of fledging age and mass were explained by growth rate or hatching date in five out of six years. Faster-growing chicks fledged younger and heavier, and earlier-hatched chicks fledged older and heavier. Consequently, no apparent correlation between fledging age and mass was observed in five out of six years. Analysis of interyear variation showed a negative correlation between fledging age and mass, which indicates that growth rates rather than hatching dates had a major effect. Wing length at fledging was independent of growth in mass. More than 80% of chicks fledged when they attained a narrow range of wing length (130–150 mm), presumably because they remained in their nests until they attained the critical wing length. In five out of six years, the chicks did not synchronize timing of fledging relative to timing of hatching. Later-hatched chicks attained lighter peak masses and at younger ages, which may indicate that their parents decreased provisioning rates when the chicks were still young. We suggest that (1) critical wing length at fledging and (2) variable parental provisioning according to timing of breeding could be underlying mechanisms determining these relationships between fledging age and mass.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3