Evolutionary History and Activity of RNase H1-Like Proteins in Arabidopsis thaliana

Author:

Kuciński Jan1,Chamera Sebastian2,Kmera Aleksandra2,Rowley M Jordan13,Fujii Sho14,Khurana Pragya1,Nowotny Marcin2,Wierzbicki Andrzej T12

Affiliation:

1. Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA

2. Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland

3. Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA

4. Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan

Abstract

Abstract RNase H1 is an endonuclease specific toward the RNA strand of RNA:DNA hybrids. Members of this protein family are present in most living organisms and are essential for removing RNA that base pairs with DNA. It prevents detrimental effects of RNA:DNA hybrids and is involved in several biological processes. Arabidopsis thaliana has been previously shown to contain three genes encoding RNase H1 proteins that localize to three distinct cellular compartments. We show that these genes originate from two gene duplication events. One occurred in the common ancestor of dicots and produced nuclear and organellar RNase H1 paralogs. Second duplication occurred in the common ancestor of Brassicaceae and produced mitochondrial- and plastid-localized proteins. These proteins have the canonical RNase H1 activity, which requires at least four ribonucleotides for endonucleolytic digestion. Analysis of mutants in the RNase H1 genes revealed that the nuclear RNH1A and mitochondrial RNH1B are dispensable for development under normal growth conditions. However, the presence of at least one organellar RNase H1 (RNH1B or RNH1C) is required for embryonic development. The plastid-localized RNH1C affects plastid DNA copy number and sensitivity to replicative stress. Our results present the evolutionary history of RNH1 proteins in A. thaliana, demonstrate their canonical RNase H1 activity and indicate their role in early embryonic development.

Funder

National Science Foundation

National Science Centre

Poland POLONEZ fellowship

European Union’s Horizon 2020 research and innovation programme

Japan Society for the Promotion of Science fellows

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3