Grapevine U-Box E3 Ubiquitin Ligase VlPUB38 Negatively Regulates Fruit Ripening by Facilitating Abscisic-Aldehyde Oxidase Degradation

Author:

Yu Yihe12,Meng Xiangxuan12,Guo Dalong12ORCID,Yang Shengdi12,Zhang Guohai12,Liang Zhenchang3ORCID

Affiliation:

1. College of Forestry, Henan University of Science and Technology, Luoyang, Henan 471000, China

2. Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, Henan 471000, China

3. Beijing Key Laboratory of Grape Science and Enology and CAS Key Laboratory of Plant Resource, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China

Abstract

Abstract The plant U-box E3 ubiquitin ligase-mediated ubiquitin/26S proteasome degradation system plays a key role in plant growth and development. Previously identified as a member of the grape PUB gene family, PUB38 was shown to participate in the berry-ripening progress. Here, we demonstrate that the E3 ligase VlPUB38 mediates abscisic acid (ABA) synthesis via 26S proteasome degradation and its involvement in regulating fruit-ripening processes. Strawberry-overexpressing VlPUB38 lines displayed obvious inhibition of mature phenotype, and this was rescued by exogenous ABA treatment and MG132. Post-ABA treatment, expression levels of ABA response-related genes in VlPUB38-overexpressed Arabidopsis significantly exceeded controls. Strawberry and Arabidopsis ectopic expression assays suggest that VlPUB38 negatively regulates fruit ripening in an ABA-dependent manner. Moreover, VlPUB38 has ubiquitin ligase activity, which depends on the U-box-conserved domain. VlPUB38 interacts with abscisic-aldehyde oxidase (VlAAO), targeting VlAAO proteolysis via the 26S proteasome system. These results indicate that VlPUB38 negatively regulates grape fruit ripening by mediating the degradation of key factor VlAAO in the ABA synthesis pathway.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Key R & D and Promotion Projects in Henan Province

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3