Allylic Hydroxylation Activity Is a Source of Saponin Chemodiversity in the Genus Glycyrrhiza

Author:

Fanani Much Z1ORCID,Sawai Satoru1234,Seki Hikaru12ORCID,Ishimori Masato3,Ohyama Kiyoshi25,Fukushima Ery O16ORCID,Sudo Hiroshi4,Saito Kazuki23,Muranaka Toshiya12ORCID

Affiliation:

1. Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan

2. RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan

3. Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675 Japan

4. Tokiwa Phytochemical Co., Ltd, Chiba, 285-0801 Japan

5. Department of Chemistry and Materials Science, Tokyo Institute of Technology, Tokyo, 152-8551 Japan

6. Translational Plant Research Group, Universidad Regional Amaz�nica IKIAM, Tena, Ecuador

Abstract

Abstract Licorice (Glycyrrhiza) produces glycyrrhizin, a valuable triterpenoid saponin, which exhibits persistent sweetness and broad pharmacological activities. In the genus Glycyrrhiza, three species, Glycyrrhiza uralensis, Glycyrrhiza glabra and Glycyrrhiza inflata, produce glycyrrhizin as their main triterpenoid saponin, which has a ketone group at C-11. Other Glycyrrhiza species produce mainly oleanane-type saponins, which harbor homoannular or heteroannular diene structures that lack the C-11 ketone. Although the glycyrrhizin biosynthetic pathway has been fully elucidated, the pathway involving saponins with diene structures remains unclear. CYP88D6 from G. uralensis is a key enzyme in glycyrrhizin biosynthesis, catalyzing the sequential two-step oxidation of β-amyrin at position C-11 to produce 11-oxo-β-amyrin. In this study, we evaluated the functions of CYP88D6 homologs from the glycyrrhizin-producing species G. glabra and G. inflata and from the non-glycyrrhizin-producing species Glycyrrhiza pallidiflora and Glycyrrhiza macedonica, using yeast engineered to supply β-amyrin as a substrate. Yeast expressing CYP88D6 homologs from glycyrrhizin-producing species produced 11-oxo-β-amyrin. However, yeast expressing CYP88D6 homologs (such as CYP88D15) from the non-glycyrrhizin-producing Glycyrrhiza species accumulated oleana-9(11),12-dien-3β-ol and oleana-11,13(18)-dien-3β-ol; these diene compounds are non-enzymatic or yeast endogenous enzymatic dehydration derivatives of 11α-hydroxy-β-amyrin, a direct reaction product of CYP88D15. These results suggest that the activities of CYP88D6 homologs, particularly their ability to catalyze the second oxidation, could influence glycyrrhizin productivity and diversify the chemical structures of saponins in Glycyrrhiza plants. A synthetic biological approach to engineer CYP88D15 could enable the production of pharmacologically active saponins with diene structures, such as saikosaponins, whose biosynthetic pathways have yet to be fully characterized.

Funder

The Grants-in-Aid for Scientific Research of the Japan Society for the Promotion of Science

Scientific Technique Research Promotion Program for Agriculture, Forestry, Fisheries, and Food Industry, Japan

The Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry

Director of RIKEN Yokohama Institute

RIKEN Rijicho Fund

Monbukagakusho Scholarship

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3