Changes and Associations of Genomic Transcription and Histone Methylation with Salt Stress in Castor Bean

Author:

Han Bing12,Xu Wei1,Ahmed Naeem1,Yu Anmin1,Wang Zaiqing12,Liu Aizhong3ORCID

Affiliation:

1. Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China

Abstract

AbstractSoil salinity is a major source of abiotic plant stress, adversely affecting plant growth, development and productivity. Although the physiological and molecular mechanisms that underlie plant responses to salt stress are becoming increasingly understood, epigenetic modifications, such as histone methylations and their potential regulation of the transcription of masked genes at the genome level in response to salt stress, remain largely unclear. Castor bean, an important nonedible oil crop, has evolved the capacity to grow under salt stress. Here, based on high-throughput RNA-seq and ChIP-seq data, we systematically investigated changes in genomic transcription and histone methylation using typical histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 tri-methylated lysine 27 (H3K27me3) markers in castor bean leaves subjected to salt stress. The results showed that gain or loss of histone methylation was closely associated with activated or repressed gene expression, though variations in both transcriptome and histone methylation modifications were relatively narrow in response to salt stress. Diverse salt responsive genes and switched histone methylation sites were identified in this study. In particular, we found for the first time that the transcription of the key salt-response regulator RADIALIS-LIKE SANT (RSM1), a MYB-related transcription factor involved in ABA(abscisic acid)-mediated salt stress signaling, was potentially regulated by bivalent H3K4me3-H3K27me3 modifications. Combining phenotypic variations with transcriptional and epigenetic changes, we provide a comprehensive profile for understanding histone modification, genomic transcription and their associations in response to salt stress in plants.

Funder

National Natural Science Foundation of China

Yunnan Applied Basic Research Projects

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3