The Mechanism of Non-Photochemical Quenching in Plants: Localization and Driving Forces

Author:

Ruban Alexander V1ORCID,Wilson Sam1

Affiliation:

1. Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Fogg Building, Mile End Road, London E1 4NS, UK

Abstract

Abstract Non-photochemical chlorophyll fluorescence quenching (NPQ) remains one of the most studied topics of the 21st century in photosynthesis research. Over the past 30 years, profound knowledge has been obtained on the molecular mechanism of NPQ in higher plants. First, the largely overlooked significance of NPQ in protecting the reaction center of photosystem II (RCII) against damage, and the ways to assess its effectiveness are highlighted. Then, the key in vivo signals that can monitor the life of the major NPQ component, qE, are presented. Finally, recent knowledge on the site of qE and the possible molecular events that transmit ΔpH into the conformational change in the major LHCII [the major trimeric light harvesting complex of photosystem II (PSII)] antenna complex are discussed. Recently, number of reports on Arabidopsis mutants lacking various antenna components of PSII confirmed that the in vivo site of qE rests within the major trimeric LHCII complex. Experiments on biochemistry, spectroscopy, microscopy and molecular modeling suggest an interplay between thylakoid membrane geometry and the dynamics of LHCII, the PsbS (PSII subunit S) protein and thylakoid lipids. The molecular basis for the qE-related conformational change in the thylakoid membrane, including the possible onset of a hydrophobic mismatch between LHCII and lipids, potentiated by PsbS protein, begins to unfold.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3