Genomic analysis reveals the population structure and antimicrobial resistance of avian Pasteurella multocida in China

Author:

Jiang Nansong123,Chen Hongmei123,Cheng Longfei123,Fu Qiuling123,Liu Rongchang123,Liang Qizhang23,Fu Guanghua123,Wan Chunhe123,Huang Yu123ORCID

Affiliation:

1. Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences , Fuzhou, Fujian Province , China

2. Fujian Key Laboratory for Prevention and Control of Avian Diseases , Fuzhou, Fujian Province , China

3. Fujian Industry Technology Innovation Research Academy of Livestock and Poultry Diseases Prevention & Control , Fuzhou, Fujian Province , China

Abstract

Abstract Objectives To investigate the population structure and antimicrobial resistance (AMR) of avian Pasteurella multocida in China. Methods Utilizing WGS analysis, we explored the phylogeny using a dataset of 546 genomes, comprising avian P. multocida isolates from China (n = 121), the USA (n = 165), Australia(n = 153), Bangladesh (n = 3) and isolates of other hosts from China (n = 104). We examined the integrative and conjugative element (ICE) structures and the distribution of their components carrying resistance genes, and reconstructed the evolutionary history of A:L1:ST129 (n = 110). Results The population structure of avian P. multocida in China was dominated by the A:L1:ST129 clone with limited genetic diversity. A:L1:ST129 isolates possessed a broader spectrum of resistance genes at comparatively higher frequencies than those from other hosts and countries. The novel putative ICEs harboured complex resistant clusters that were prevalent in A:L1:ST129. Bayesian analysis predicted that the A:L1:ST129 clone emerged around 1923, and evolved slowly. Conclusions A:L1:ST129 appears to possess a host predilection towards avian species in China, posing a potential health threat to other animals. The complex AMR determinants coupled with high frequencies may strengthen the population dominance of A:L1:ST129. The extensive antimicrobial utilization in poultry farming and the mixed rearing practices could have accelerated AMR accumulation in A:L1:ST129. ICEs, together with their resistant clusters, significantly contribute to resistance gene transfer and facilitate the adaptation of A:L1:ST129 to ecological niches. Despite the genetic stability and slow evolution rate, A:L1:ST129 deserves continued monitoring due to its propensity to retain resistance genes, warranting global attention to preclude substantial economic losses.

Funder

Fujian Provincial Government and Chinese Academy of Agricultural Sciences ‘5511’ Collaborative Innovation Project

Fujian Academy of Agricultural Sciences Project

Fujian Science and Technology Program

Science and Technology Innovative Research Team of Fujian Academy of Agricultural Sciences

Earmarked Fund for China Agriculture Research System

Natural Science Foundation of Fujian, China

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3