Molecular ecology of highest priority critically important antibiotic resistant Escherichia coli from mammals housed at an urban zoo

Author:

Sealey Jordan E1,Saunders Richard2,Horspool Teresa2,Barrows Michelle G2,Avison Matthew B1ORCID

Affiliation:

1. University of Bristol School of Cellular and Molecular Medicine , Biomedical Sciences Building, University Walk, Bristol BS8 1TD , UK

2. Bristol Zoological Society , Bristol Zoo Gardens, Clifton, Bristol, BS8 3HA , UK

Abstract

Abstract Objectives Zoos are environments where species of highly valued animals are kept largely separated from others and the wider world. We report the molecular ecology of critically important antibiotic resistant (ABR) Escherichia coli carried by 28 mammalian species housed in a zoo located in an urban residential district. Methods Over 3 months we collected 167 faecal samples from captive mammals and processed for E. coli resistant to third-generation cephalosporins (3GC-R) and fluoroquinolones (FQ-R). Isolates were sequenced using Illumina. Results We identified high rates of faecal sample-level positivity, with 50%, 57% and 36% of mammalian species excreting 3GC-R, FQ-R or dual 3GC-R/FQ-R E. coli, respectively. Isolates represented multiple ST and ABR mechanisms; CTX-M-15 and CMY-2 dominated for 3GC-R, and target-site mutation caused 75% of FQ-R. We identified multiple examples of ABR E. coli transmission between mammalian species in separate enclosures, and a variant of the epidemic plasmid pCT within the zoo. There was no evidence for ABR E. coli leaving the zoo, based on comparative analysis with E. coli from humans, cattle and dogs isolated from the 50 × 50 km region in which the zoo is located. Amoxicillin/clavulanate was the most widely used antibiotic in the zoo, and we identified four widely disseminated amoxicillin/clavulanate resistance mechanisms, including a previously unreported inhibitor-resistant TEM, and the carbapenemase OXA-181. Conclusions We conclude that the zoo studied here is a ‘melting pot’ for the selection and circulation of 3GC-R and FQ-R E. coli, but these circulating E. coli appear captive within the zoo.

Funder

Medical Research Foundation National PhD Training Programme in Antimicrobial Resistance Research

seven UK research councils

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3