Critical role of the RpoE stress response pathway in polymyxin resistance of Escherichia coli

Author:

Zeng Ximin1,Hinenoya Atsushi1234,Guan Ziqiang5,Xu Fuzhou16,Lin Jun1ORCID

Affiliation:

1. Department of Animal Science, The University of Tennessee , Knoxville, TN , USA

2. Graduate School of Veterinary Science, Osaka Metropolitan University , Osaka , Japan

3. Asian Health Science Research Institute, Osaka Metropolitan University , Osaka , Japan

4. Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University , Osaka , Japan

5. Department of Biochemistry, Duke University Medical Center , Durham, NC , USA

6. Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences , Beijing , China

Abstract

Abstract Objectives Polymyxins, including colistin, are the drugs of last resort to treat MDR bacterial infections in humans. In-depth understanding of the molecular basis and regulation of polymyxin resistance would provide new therapeutic opportunities to combat increasing polymyxin resistance. Here we aimed to identify novel targets that are crucial for polymyxin resistance using Escherichia coli BL21(DE3), a unique colistin-resistant model strain. Methods BL21(DE3) was subjected to random transposon mutagenesis for screening colistin-susceptible mutants. The insertion sites of desired mutants were mapped; the key genes of interest were also inactivated in different strains to examine functional conservation. Specific genes in the known PmrAB and PhoPQ regulatory network were inactivated to examine crosstalk among different pathways. Lipid A species and membrane phospholipids were analysed by normal phase LC/MS. Results Among eight mutants with increased susceptibility to colistin, five mutants contained different mutations in three genes (rseP, degS and surA) that belong to the RpoE stress response pathway. Inactivation of rpoE, pmrB, eptA or pmrD led to significantly increased susceptibility to colistin; however, inactivation of phoQ or eptB did not change colistin MIC. RpoE mutation in different E. coli and Salmonella resistant strains all led to significant reduction in colistin MIC (16–32-fold). Inactivation of rpoE did not change the lipid A profile but significantly altered the phospholipid profile. Conclusions Inactivation of the important members of the RpoE regulon in polymyxin-resistant strains led to a drastic reduction in polymyxin MIC and an increase of lysophospholipids with no change in lipid A modifications.

Funder

University of Tennessee

Overseas Research Scholar Program in Osaka Prefecture University

China Scholarship Council

United States Department of Agriculture

National Institute of Food and Agriculture

NIH

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3