Identification of a novel carbapenem-hydrolysing class D β-lactamase RAD-1 inRiemerella anatipestifer

Author:

Li Pei12,Yang Zhishuang3,Lei Ting1,Dai Yujie1,Zhou Yang1,Zhu Dekang3ORCID,Luo Hongyan1ORCID

Affiliation:

1. College of Veterinary Medicine, Southwest University , Beibei, Chongqing , China

2. National Center of Technology Innovation for Pigs , Rongchang, Chongqing , China

3. Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University , Chengdu, Sichuan , China

Abstract

AbstractObjectivesTo elucidate the role of a novel carbapenem-hydrolysing class D β-lactamase (RAD-1) from Riemerella anatipestifer.MethodsWe applied WGS and bioinformatic analysis to screen putative β-lactamase genes in R. anatipestifer SCVM0004. A putative class D β-lactamase gene was cloned into pET24a and transferred into Escherichia coli BL21 (DE3) for antibiotic susceptibility determination and protein purification. Meanwhile, the purified native protein was used to determine the enzymatic activities.ResultsA class D β-lactamase, RAD-1, was identified in the genome of R. anatipestifer SCVM0004. It was distinct from all characterized class D β-lactamases (≤42% amino acid sequence identity). Searching in GenBank showed that blaRAD-1 was widely disseminated among R. anatipestifer. Genomic environment analysis indicated that the chromosomal structures of blaRAD-1-located regions were relatively conserved. Expression of RAD-1 in E. coli results in elevated MICs for various β-lactam antibiotics, including penicillins, extended-spectrum cephalosporins, a monobactam and carbapenems. Moreover, kinetic analysis of purified RAD-1 revealed: (i) high-level activity against penicillins; (ii) highest affinity for carbapenems; (iii) moderate hydrolysis of extended-spectrum cephalosporins and a monobactam; and (iv) no activity for oxacillin and cefoxitin.ConclusionsThis study identified a novel chromosomally located class D carbapenemase RAD-1 (Bush–Jacoby functional group 2def) in R. anatipestifer SCVM0004. Moreover, bioinformatic analysis confirmed that the RAD-1 was widely prevalent and conserved in R. anatipestifer.

Funder

National Natural Science Foundation of China

National Center of Technology Innovation for Pigs

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3