Size And Locomotor Ecology Have Differing Effects on the External and Internal Morphologies of Squirrel (Rodentia: Sciuridae) Limb Bones

Author:

Rickman J1,Burtner A E1,Linden T J1,Santana S E1ORCID,Law C J123ORCID

Affiliation:

1. Department of Biology and Burke Museum of Natural History and Culture, University of Washington , Seattle, WA 98105, USA

2. Department of Integrative Biology, University of Texas , Austin, TX 78712 , USA

3. American Museum of Natural History , New York, NY 10024 , USA

Abstract

SynopsisMammals exhibit a diverse range of limb morphologies that are associated with different locomotor ecologies and structural mechanics. Much remains to be investigated, however, about the combined effects of locomotor modes and scaling on the external shape and structural properties of limb bones. Here, we used squirrels (Sciuridae) as a model clade to examine the effects of locomotor mode and scaling on the external shape and structure of the two major limb bones, the humerus and femur. We quantified humeral and femoral morphologies using 3D geometric morphometrics and bone structure analyses on a sample of 76 squirrel species across their four major ecotypes. We then used phylogenetic generalized linear models to test how locomotor ecology, size, and their interaction influenced morphological traits. We found that size and locomotor mode exhibit different relationships with the external shape and structure of the limb bones, and that these relationships differ between the humerus and femur. External shapes of the humerus and, to a lesser extent, the femur are best explained by locomotor ecology rather than by size, whereas structures of both bones are best explained by interactions between locomotor ecology and scaling. Interestingly, the statistical relationships between limb morphologies and ecotype were lost when accounting for phylogenetic relationships among species under Brownian motion. That assuming Brownian motion confounded these relationships is not surprising considering squirrel ecotypes are phylogenetically clustered; our results suggest that humeral and femoral variation partitioned early between clades and their ecomorphologies were maintained to the present. Overall, our results show how mechanical constraints, locomotor ecology, and evolutionary history may enact different pressures on the shape and structure of limb bones in mammals.

Funder

American Museum of Natural History

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3