Subspecies divergence and pronounced phylogenetic incongruence in the East-Asia-endemic shrubMagnolia sieboldii

Author:

Kikuchi Satoshi12,Osone Yoko1

Affiliation:

1. Forestry and Forest Products Research Institute, Forest Research and Management Organization, Matsunosato, Tsukuba City, Ibaraki Prefecture, Japan

2. Hokkaido Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitsujigaoka, Toyohira, Sapporo City, Hokkaido, Japan

Abstract

AbstractBackground and AimsThe biogeographic patterns of the East-Asia-endemic shrub Magnolia sieboldii, in which the range of the subsp. sieboldii is interposed with the disjunct distribution of subsp. japonica, implies a complex evolutionary history, involving rapid speciation and hybridization. Here, we aim to reveal the evolutionary and phylogeographic histories of the species with a particular focus on the time of subspecies divergence, the hypothesis of secondary hybridization and the Pleistocene survival of each subspecies, using a combination of genetic analyses and ecological niche modelling.MethodsGenetic variation, genetic structures and phylogenetic relationships were elucidated based on nuclear low-copy genes, chloroplast DNA, and nuclear simple sequence repeats (SSRs). A scenario selection analysis and divergence time estimation were performed using coalescent simulation in DIYABC and *BEAST. Ecological niche modelling and a test of niche differentiation were performed using Maxent and ENMTools.Key ResultsAll marker types showed deep, but pronouncedly incongruent, west–east genetic divergences, with the subspecies being delineated only by the nuclear low-copy genes. Phylogenetic tree topologies suggested that ancient hybridization and introgression were likely to have occurred; however, this scenario did not receive significant support in the DIYABC analysis. The subspecies differentiated their niches, but both showed a dependence on high humidity and were predicted to have persisted during the last glacial cycle by maintaining a stable latitudinal distribution via migration to lower altitudes.ConclusionsWe found a deep genetic divergence and a pronounced phylogenetic incongruence among the two subspecies of M. sieboldii, which may have been driven by major paleogeographic and paleoclimatic events that have occurred since the Neogene in East Asia, including global cooling, climate oscillations and the formation of land bridges. Both subspecies were, however, considered to persist in situ in stable climatic conditions during the late Pleistocene.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3