Excess nitrate induces nodule greening and reduces transcript and protein expression levels of soybean leghaemoglobins

Author:

Du Mengke1,Gao Zhi1,Li Xinxin1,Liao Hong1

Affiliation:

1. Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China

Abstract

Abstract Background and Aims Efficient biological nitrogen fixation (BNF) requires leghaemoglobin (Lb) to modulate oxygen pressure in nodules. Excess N supply severely inhibits BNF through effects on Lb during nodulation. As yet, a systematic identification and characterization of Lb-encoding genes in soybean has not been reported. Methods The effects of N on BNF were studied in soybean plants inoculated with rhizobia and exposed to excess or low N availability in hydroponic cultures. To identify soybean Lb proteins, BLAST searches were performed on the Phytozome website. Bioinformatic analysis of identified GmLbs was then carried out to investigate gene structure, protein homology and phylogenetic relationships. Finally, quantitative real-time PCR was employed to analyse the expression patterns of soybean Lb genes in various tissues and in response to high N availability. Key Results Excess N significantly accelerated nodule senescence and the production of green Lb in nodules. In total, seven haemoglobin (Hb) genes were identified from the soybean genome, with these Hb genes readily split into two distinct clades containing predominantly symbiosis-associated or non-symbiotic Hb members. Expression analysis revealed that all of the symbiosis-associated Lbs except GmLb5 were specifically expressed in nodules, while the non-symbiotic GmHbs, GmHb1 and GmHb2, were predominantly expressed in leaves and roots, respectively. Among identified GmLbs, GmLb1–4 are the major Lb genes acting in soybean nodulation, and each one is also significantly suppressed by exposure to excess N. Conclusions Taken together, the results show that excess N inhibits BNF by reducing nodule formation, Lb concentration and nitrogenase activity. The characteristics of the entire Hb family were analysed, and we found that GmLb1–4 are closely associated with nodule development and N2 fixation. This works forms the basis for further investigations of the role of Lbs in soybean nodulation.

Funder

China National Key Program for Research and Development

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Reference45 articles.

1. The origin and functions of haemoglobin in plants;Appleby;Science Progress,1992

2. Preparation and experimental use of leghaemoglobin.;Appleby,1980

3. The language of nitric oxide signalling;Baudouin;Plant Biology,2011

4. Preparation of a complementary DNA for leghaemoglobin and direct demonstration that leghaemoglobin is encoded by the soybean genome;Baulcombe;Nucleic Acids Research,1978

5. Effect of nitrate on components of nodule leghaemoglobins;Becana;Journal of Experimental Botany,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3